Fabian,
Hi Aaron,this is explained in the paper and to some extend in the slides together with examples. To summarize it: Not every edit "undoing the actions of another editor" does necessarily lead to an identical revision that was there before. One example: I add new unique content to the article and in the same edit, I remove the exact words that you just wrote in the previous edit. I'm effectively reverting your edit, according to the Wikipedia definition and also to what most editors see as a revert. But there is no revision content/hash value generated that has been there before (i.e. it would not be detected by a method looking for identical hashes = false negative). That is of course only according to the Wikipedia definition, which puts a strong emphasis on "undoing". The MD5 hash method does NOT make any mistakes when you use the definition "A revert is going back to a previous revision" as a baseline. Our point in this paper is essentially that this latter definition does not really reflect what a revert in fact is, according to the WIkipedia definition and to users. It is more a definition of what normally happens when a revert is carried out (compare the Wikipedia definition --> "normally..") That, in turn, can lead to a number of misinterpretations of the antagonistic relationships between users, when you want (like us, in later work) e.g. to model a social network between them. The definition "a revert means going back to another, identical revision" is too narrow, as there are (hence the 12% coverage gain) a lot more edit actions that fall under the term "revert". Also, this definition produces a lot of false positives, that are not reverts in the understanding of users/Wikipedia definition (hence the 37%).If it is still unclear, I would recommend you to read the paper as we explain it more in detail there. For any remaining questions, I will of course try to answer your emails as fast as possible.Best,FabianOn Jun 28, 2012, at 1:39 AM, Aaron Halfaker wrote:Fabian,I'm confused by your explanation.How is it possible that this 37% of revisions that are detected as reverts via a md5 hash are not considered reverts by (I presume) humans? Can you give a common example? By definition, identity revert revisions represent an exact replica of a previous revision in an article and, therefore, should discard any intermediate changes. What definition of "revert" are you using that the md5 hash method does not satisfy?-Aaron_______________________________________________On Wed, Jun 27, 2012 at 12:12 PM, Floeck, Fabian (AIFB) <fabian.floeck@kit.edu> wrote:
@Tilman: Thanks, I was not aware of that being in the NL, didn't read it. Excuses everyone for the double posting.@Federico: Sorry for not putting it more clearly/ confusing you: So1. From the reverts detected by MD5 hash, 37% (actually 37% percent, I just looked it up) were not detected by the new method, 63% percent where detected by the new method as well. When we asked people about if these 37% are a full revert (and requiring 80%+ of people to agree for it to be labeled a "true revert") for none of these reverts the crowd agreed (i.e. 0% accuracy, only goes up if you lower the agreement notably, which means you cannot be sure anymore, if it is indeed a revert).2. When we looked at the results produced from our method only, (again, with the 80% agreement score threshold), about 70% of the found results were deemed reverts in comparison.3. I just put these numbers in the mail (and the presentation) to exemplify the gain of accuracy. They are not in the paper in this form, as there, we showed the gain in accuracy just by the statistical significance of the differences in the agreements score, which I later realized might not be as "tangible" as some accuracy numbers. Turns out it seems to be more confusing the way I put it, sorry for that.@WereSpielChequers: That could be indeed an interesting direction one could look into. Although given the problems of the identity revert method we discussed in the paper, I can not yet see how these could be alleviated by looking at reverts in the article section-wise. You are certainly right to point out that in this specific situation, although there would be not necessarily an identical hash for the whole article leading to a revert detection, there could be an identical/duplicate hash for the subsection, leading to an accurate revert detection in that section. Though inside this section, the same issues as portrayed in our paper would surface. I will look at that period of "Sarah Palin" however to get a better picture of that. Thanks a lot for the input.Best,FabianOn Jun 27, 2012, at 8:14 PM, Federico Leva (Nemo) wrote:I don't understand: if 35 % of the sample reverts identified by the hash method are not considered such by human check and the new system has a 70 % accuracy, the difference in false positives is 5 %? I don't understand from the paper either.
The main point seems to be about the more reverts found (as expected), right?
Nemo
_______________________________________________
Wiki-research-l mailing list
Wiki-research-l@lists.wikimedia.org
https://lists.wikimedia.org/mailman/listinfo/wiki-research-l--
Karlsruhe Institute of Technology (KIT)
Institute of Applied Informatics and Formal Description Methods
Dipl.-Medwiss. Fabian Flöck
Research Associate
Building 11.40, Room 222
KIT-Campus South
D-76128 Karlsruhe
Phone: +49 721 608 4 6584
Skype: f.floeck_work
E-Mail: fabian.floeck@kit.edu
WWW: http://www.aifb.kit.edu/web/Fabian_Flöck
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association
_______________________________________________
Wiki-research-l mailing list
Wiki-research-l@lists.wikimedia.org
https://lists.wikimedia.org/mailman/listinfo/wiki-research-l
Wiki-research-l mailing list
Wiki-research-l@lists.wikimedia.org
https://lists.wikimedia.org/mailman/listinfo/wiki-research-l
--
Karlsruhe Institute of Technology (KIT)
Institute of Applied Informatics and Formal Description Methods
Dipl.-Medwiss. Fabian Flöck
Research Associate
Building 11.40, Room 222
KIT-Campus South
D-76128 Karlsruhe
Phone: +49 721 608 4 6584
Skype: f.floeck_work
E-Mail: fabian.floeck@kit.edu
WWW: http://www.aifb.kit.edu/web/Fabian_Flöck
KIT – University of the State of Baden-Wuerttemberg and
National Research Center of the Helmholtz Association
_______________________________________________
Wiki-research-l mailing list
Wiki-research-l@lists.wikimedia.org
https://lists.wikimedia.org/mailman/listinfo/wiki-research-l