
Language Identification on the Web:

Extending the Dictionary Method

Radim Řeh̊uřek1 and Milan Kolkus2

1 Masaryk University in Brno
xrehurek@fi.muni.cz

2 Seznam.cz, a.s.
milan.kolkus@firma.seznam.cz

Abstract. Automated language identification of written text is a well-
established research domain that has received considerable attention in
the past. By now, efficient and effective algorithms based on character
n-grams are in use, mainly with identification based on Markov models
or on character n-gram profiles. In this paper we investigate the limi-
tations of these approaches when applied to real-world web pages. The
challenges to be overcome include language identification on very short
texts, correctly handling texts of unknown language and texts comprised
of multiple languages. We propose and evaluate a new method, which
constructs language models based on word relevance and addresses these
limitations. We also extend our method to allow us to efficiently and au-
tomatically segment the input text into blocks of individual languages,
in case of multiple-language documents.

1 Motivation

The amount of information available on the net is staggering and still growing
at a fast pace. To make this information available, applications have sprung
up to fill the void and gather, process and present Web information to the
knowledge-hungry user. Unfortunatelly, documents on the Web have historically
been created with human reader in mind, in formats such as HTML, and are
not readily understandable by computers. Although XML and semantic mark-
up (e.g. the xml:lang attribute, or the <div lang="en"> construct) have been
introduced to alleviate these problems, reality remains that many documents do
not make use of metadata tags or, even worse, make use of them incorrectly and
provide misleading information.

By not having metadata provided for us, or by deciding not to trust it, we
are left with deducing information from the text itself. This is the domain of
natural language processing (NLP) and text mining. This article deals with one
aspect of text mining, namely telling which language (or languages) is a given
Web page written in.

2 Related Work

A general paradigm in automated language identification is to create language
models during a training phase and compare input document against these

A. Gelbukh (Ed.): CICLing 2009, LNCS 5449, pp. 357–368, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

358 R. Řeh̊uřek and M. Kolkus

models during language identification. This places the task into the domain
of supervised learning methods. Another consequence is that the set of target
languages needs to be known beforehand, which makes language identification a
classification problem.

A “common words” approach [1] is based on the observation that for each
language, there is small class of words that carry little information but make up
a large portion of any text. These are called function words or stop words and
their presence is to be expected as word distribution follows Zipf’s law.

In [2] it is noted that humans need surprisingly little in order to correctly
identify a language. Interestingly, this is the case even if they are not proficient
in that language or when the text snippet is quite short. This observation leads
to a class of algorithms based on character (or even byte) n-grams, as opposed
to more linguistically refined syntactic or semantic methods.

– A popular tool called textcat [3] constructs a ranking of the most frequent
character n-grams for each language during the training phase and proclaims
this ranking the language model. For classification, a ranking is constructed
for the input document in the same fashion and is compared against each
available language model. The closest model (in terms of ranking distances,
see [3] for details) wins and is returned as the identified language.

– Another character n-gram approach pioneered by [2] computes likelihood of
generating the observed character sequence explicitly, through use of higher
order Markov models. Let S be a sequence which consists of n characters
(s1, . . . , sn). Then the probability this sequence was generated by Markov
model L of order k is given by

P (S | L) = p(s1, . . . , sk | L)
n∏

i=k

p(si+1 | si−k+1 . . . si, L),

where the first factor is the initial state distribution and the conditional
probability describes transitions. Training the language model consists of
estimating these transition probabilities. Again, winner is the language with
the best likelihood of generating the input text. It is observed that using
character trigrams, i.e. Markov models of order 2, already gives optimal
results and increasing the model order therefore cannot affect performace
much. For a comparison of character trigrams to “common words”, see [4].

– A related approach makes use of Shannon’s information theory and com-
pares language entropies [5]. Here Markov models are also estimated based
on training data. In contrast to [2], all models of orders 0, . . . , k are used
and their relationship explicitly modeled. This allows the algorithm to fall
back to lower order models in case of insufficient data through mechanism
called escape probabilities. Decision function views input as a stream of char-
acters and in accordance with information theory tries to predict the next
character in the stream. Success of these predictions is measured by cross-
entropy and the model with the lowest cross-entropy after having processed
the whole stream wins. Because of its ties to information theory and language
compression, this technique is sometimes called the compression technique.

Language Identification on the Web: Extending the Dictionary Method 359

Apart from individual algorithms, research into language recognition has also
identified key factors which directly influence performance:

– Size of training data. Methods are evaluated based on how quickly their
models converge, given differing sizes of training corpora. Note that more is
not necessarily better here, as there is a risk of overtraining or overfitting
the training data.

– Size of input text. Methods can be distinguished by how much text they
need to be given in order to reliably identify its language. Amount of text
can be roughly divided into small (a phrase, less than 30 characters or up
to 5 words), large (a paragraph, more than 300 characters or 50 words) and
medium (a sentence, in between).

3 Proposed Method

Motivation for Change
Summing up the previously mentioned articles, there are several reasons behind
the success of language modelling via character n-grams:

– Fast convergence. Very small training corpora (in the order of hundreds
of kilobytes of text) are required to learn the models. See e.g. [6] for a study
on speed of model convergence for character bigrams and trigrams.

– Robust. As long as the overall letter distribution in input document fol-
lows that of training examples, problematic language phenomena such as
neologisms (words newly introduced into the language), spelling errors, rare
inflections or unknown words are handled gracefully.

– Domain independent. In [2] this approach was applied to a domain as
distant as that of genetic sequence identification. Another often highlighted
feature is that character n-gram methods do not require tokenization of the
input, making them also suitable for Asian languages where tokenization is
an interesting challenge in itself.

We implemented, for some time used and then evaluated an algorithm based
on the compression technique [5]. We estimated all i-gram distributions for
i = 0, . . . , n and then combined them through an Expectation Maximization
(EM) smoothing algorithm on held-out data. We were interested in detecting
nine European languages: French (fr), English (en), Italian (it), Spanish (es),
Slovakian (sk), Czech (cs), Slovenian (sl) and Polish (pl). Although this method
worked almost perfect on our test data, a number of real-world issues soon be-
came apparent when applied to the task of Web page classification. The main
problem was not insufficient accuracy of classification as such, but rather a shift
in the formulation of the language identification problem:

– No unknown language option. All methods listed above based on en-
tropy, Markov processes or n-gram profiles return the nearest, best-fitting
language. They assume that a) the set of languages is complete, known and
trained for beforehand and b) that the input text is in exactly one of them.
While the first assumption can be dismissed as our own decision, the latter
is unrealistic for the Web.

360 R. Řeh̊uřek and M. Kolkus

– Multiple languages. In an also rather frequent scenario, there are parts of
the input document which are in different languages. This may stem from
a page’s logical structuring (menu, text body, copyright notices) but also
from the nature of the text body itself. This moves the document away from
any one model and the language models become mixed in undesired ways.
As a result, the document may even be identified as a completely unrelated
language not present in the input text at all. In our experience, multilingual
documents somehow often ended up being marked as Slovenian.

– Close languages (same language family). As seen above, our language
set includes Slovenian, Slovakian, Czech and Polish, which are all Slavic
languages with considerable grammatical as well as lexical overlap. This is
exacerbated by the fact that real texts on the Web often come in deaccented
version, so that the trained models are unable to even theoretically take
advantage of otherwise telling national characters (ř for Czech, ľ for Slovak
etc.).

As a special case of the second point, there are many pages where letter
distribution is heavily skewed by repetition of certain words or phrases. This
includes discussion lists with In reply to: fields and so on. This problem does
not come up in well-behaved corpora, but quickly becomes a nuisance when
dealing with the Web.

To address the first two issues, we tried augmenting our implementation of
the n-gram algorithm. We looked for a minimum threshold for each language
that a document score has to exceed in order to be identified as that particular
language, even if its score is the best available. Note that for language detection,
document length is not an issue, as all models are evaluated on the same number
of n-grams and the score numbers are thus directly comparable. For the fixed
threshold to work, however, the scores need to be normalized to negate the effect
of varying document lengths, as adding even one n-gram changes the order of
magnitude of the probability scores.

Although we tried setting this threshold automatically, based on held-out
training data, the results were not satisfactory. It appears that the per-character
cross-entropies are dependent on the contents of text n-grams in a way that
prohibits direct absolute comparison against any fixed threshold. In other words,
it proved impossible to find a threshold that would allow us to tell “this best
fitting language is in fact an error”. We also tried learning a special unknown
language model from a hotch-potch of documents in various random languages.
This worked better and solved the Slovenian classification problem, but seems
rather ad-hoc and theoretically unfounded.

To avoid headache of further complicating an already complex algorithm, we
set out to try a different approach.

Dictionary Method

In [2], dictionary methods (i.e. methods based on words rather than characters)
are discussed and dismissed, based on their best known representative, “common
words”, being too restrictive and only applicable to longer texts.

Language Identification on the Web: Extending the Dictionary Method 361

Going through the list of n-gram advantages, the benefits of broad domain in-
dependence, no required tokenization and fast model convergence will indeed have
to go. Since our goal is to tell apart European (Latin character based) natural
languages, the first two are not really a concern. The last one, small amount of
training examples required, was perhaps an asset back when these methods were
developed. In the present day, with Web as Corpus [7] projects and NLP advance-
ments, fast indexing and retrieval techniques, the amount of available data is no
longer a critical issue. The same cannot be said for runtime performance, as the
same reason why there are many documents requires us to process them at in-
creased speed. For these reasons we decided to revisit the dictionary method.

We take a qualitatively different approach to constructing the dictionary lan-
guage models. Rather than looking for words that are common in a given lan-
guage (called function or stop words), we note which words are specific for a
language, or rather, how specific they are. The foundation of our algorithm is a
relevance mapping

rel(word, language) : W × L �→ R

where W is a set of all words present in the training data and L the set of
considered languages. We call the real-valued score of word w ∈ W in a language
l ∈ L its relevance. In other words, the mapping is not binary as in the case of
the “common words” approach, but rather a soft grading of words. Positive
relevance hints at the word being indicative of the language, relevance around
zero naturally corresponds to “no correlation” and negative values to “this word
is indicative of absence of the language”. We will call these positive, near-zero
and negative evidence, respectively.

Naturally, the relevance mapping is constructed automatically from labeled
training data. In contrast to character n-gram models, the convergence is much
slower and significantly larger training corpura are required. We estimate the
word relevance using reasoning detailed in [8]. Their idea, although developed
for classifying documents into topics, can also be applied to our problem of
language identification. Below we give a short overview of the main assumptions
and steps behind derivation of the final relevance formula; for a more thorough
discussion on various aspects, please see the original article [8].

We start by noting frequencies of words w1, w2, . . . , wN within each language
corpus and compare them to frequencies in a general, background corpus. In this
context, a corpus C is simply a collection of D documents, C = (d1, d2, . . . , dD).
For each language lang, we have a corpus Clang of documents only in that
language, plus one general background corpus which represents a collection of
documents of background language lang0. This background language is ideally
completely language neutral, or more realistically represents the distribution of
all languages on the Web. To approximate lang0, we consider the union of all
language corpora to be the background corpus, C0 =

⋃
Clang. The uncorrected

observed frequency of word w in language lang is then

ḡlang(w) =
TF (w, Clang)

#(Clang)
, (1)

362 R. Řeh̊uřek and M. Kolkus

with #(C) being the total number of words in corpus C and TF the number of
occurences of a word in a corpus, and

g0(w) =
TF (w, C0)

#(C0)
(2)

for the background language.
From the assumption of languages being modelled as Bernoulli (word uni-

gram) sources, the probability that a document d that contains fi instances of
word wi was produced by language lang is given by the multinomial

P (d | lang) =
(

f0 + f1 + · · · + fN

f0, f1, . . . , fN

) N∏

i=0

glang(wi)fi . (3)

To avoid singularities for zero frequencies, the Jelinek-Mercer smoothing cor-
rection is introduced

glang(w) = αg0(w) + (1 − α)ḡlang(w) (4)

for some small value of α, such as 0.1.
After substituting (4) into (3), we compute logarithm of probability ratio that

a document was emitted by lang rather the background language lang0 by

log
P (d | lang)
P (d | lang0)

=
N∑

i=0

filog
αg0(wi) + (1 − α)glang(wi)

g0(wi)
(5)

An interesting observation the authors present is that negative and near-zero
evidence contributes very little to classification accuracy. In fact, according to [8],
accuracy actually improves when near-zero and negative evidence is purpose-
fully omitted. Translated to our language identification problem, we only pay
attention to words that are highly indicative of the given language, disregarding
near-zero and negative evidence entries. This has the pleasant side-effect of keep-
ing the models reasonably sized, despite there being virtually tens of millions of
possible words in each language relevance mapping. With this simplification and
some minor mathematical tricks (see [8]) the formula becomes an elegant and
manageable ∑

gL(wi)�glang(wi)

fi · rel(wi, lang), (6)

where rel(w, lang) = log(glang(w))− log(g0(w)) is our desired relevance of word
w in language lang. Put in words, the relevance of a word measures the orders
of magnitude by which it is more frequent in the specific language corpus com-
pared to the background corpus. This a surprisingly simple relationship, given
we started only from the assumption of word independence (Bernoulli model).
Another way to look at the formula is to realize that fi corresponds to Term Fre-
quency (TF) and rel(wi, lang) to a kind of Inverse Document Frequency (IDF)
component, linking this result to the general framework of TF-IDF classifiers.

Language Identification on the Web: Extending the Dictionary Method 363

Obviously this is a sharp divergence from the idea of identifying languages by
the most “common words”.

With all pieces in place, how do we go on choosing which languages a sequence
of words belongs to? According to the above derivation, we simply iterate over
words that are distinctive of each language and sum their relevancies. We may
compare this value to a threshold to immediately see if there was enough evidence
to proclaim the document d as belonging to language lang. But to abstract from
document length, we first divide this sum by the length of the document in
words, that is, we take average of the individual word relevancies. The final
decision function which identifies document d as coming from language lang is
then

score(d, lang) =

∑
gL(wi)�glang(wi)

fi · rel(wi, lang)
∑

fi
≥ tlang. (7)

The threshold tlang is found, for each language separately, by optimizing an
objective function on held-out data. One candidate for objective function is the
F1 measure, the generalized formula of which is

Fβ = (1 + β2)
precision · recall

β2 · precision + recall
.

F1 measure is popular in Information Retrieval and defines an equal trade-off
between precision and recall. Other objective functions are possible, depending
on the desired application of language identification. If the cost of not identifying
the right language (false negative) is higher than cost of erroneously identifying
an unwanted language (false positive), higher preference should be given to recall
(e.g. via the F2 measure) and vice versa. This effectively lowers (resp. raises) the
estimated language threshold.

Contrary to results obtained from using thresholds for character n-gram
method, detecting unknown language works quite reliably (see Evaluation sec-
tion). Because some words may be indicative of several languages (such as the
previously mentioned lexical intersection of Slavic languages), more than one
language may be recognized, too.

Practical Considerations
As noted earlier, runtime performance of classification is important. Interpreting
equation (7), the algorithm consists of tokenizing input text, averaging token
relevancies and comparing this sum to a precomputed threshold. This can be
done extremely fast, using any of the many commonly available data structures
which map strings into numbers.

As for memory considerations, the mapping that needs to be stored is in fact
very sparse, consisting of only those words which are distinctive for a language.
In fact, the size of each language model when stored as Patricia trie [9] was in
the tens of megabytes, which is comparable to size of our character pentagram
models. This is not surprising as character pentagrams already come close in
length to whole words.

364 R. Řeh̊uřek and M. Kolkus

We solved the practical question of obtaining large and representative lan-
guage corpora by using Wikipedia dumps [10]. As research into Web corpora [7]
rapidly progresses, it can be expected that assembling large text collections will
become less and less of a problem in the future. It must be kept in mind how-
ever that common NLP techniques like stemming or lemmatization may not be
applied, as these are dependent on language—the very thing we don’t know and
want to determine in the first place.

Evaluation

To evaluate our algorithm, we trained it on Wikipedia dumps [10] of the nine
target languages. As a reminder, these are French (fr), English (en), Italian
(it), Spanish (es), Slovakian (sk), Czech (cs), Slovenian (sl) and Polish (pl). To
avoid overfitting the training data, we discarded duplicate sentences and only
used each sentence once in our corpus. Sentences with non-Latin (mostly Asian
and Arabic) characters were also ignored. Some data statistics can be seen in
Table 1, where the number of unique sentences corresponds to the size of training
data. In the same table we also give final model statistics. We put aside three
thousand sentences of differing lengths for each language, to be used as test
data. These were divided into small, medium and large sub-corpora (with texts
of 2–5 words, 6–50 words and over 50 words, respectively), so that each sub-
corpus contained exactly 1,000 texts. We manually checked the test corpora and
estimated that the ratio of erroneously labeled examples is

– about 10% for medium length documents (mostly municipality and proper
name enumerations),

– about 20% for long texts (same reason, plus many texts are in fact English
phrases such as song or book titles)

– and as much as 50–70% for the short texts.

Short texts are especially bad because they concentrate “sentences” consisting
of formulas, location entries, article headings with a person’s name and lifetime
and so on. All of these often refer to foreign institutions and have no connection
to the language of the main article. Final sizes of test corpora after removing
these problematic texts are given in Table 1.

Table 1. Overall data and model statistics

Language Dump size No. unique No. test documents Dictionary model
code [GB] sentences [k] small medium large size [words]

cs 4.8 2,926 814 907 814 551,126
de 39.4 27,010 461 916 762 944,450
en 208.3 74,926 448 980 998 548,649
es 18.9 10,848 520 891 742 318,423
fr 39.8 18,048 483 852 765 373,432
it 26.0 11,529 469 836 727 378,817
pl 18.0 10,157 286 878 784 799,180
sk 3.3 1,769 275 916 768 474,003
sl 2.8 1,472 249 916 795 288,442

Language Identification on the Web: Extending the Dictionary Method 365

Table 2. Evaluation on test data

n-gram method dictionary method
language text size text size

code small medium large small medium large

cs 81.9/75.2 96.8/96.0 100.0/100.0 64.9/84.0 85.2/96.9 97.8/99.6
pl 84.1/67.6 97.4/96.5 97.9/97.2 82.9/90.2 95.5/97.0 96.9/97.5
sk 81.6/77.7 97.7/96.9 99.3/99.0 57.8/82.9 71.4/96.6 87.6/96.7
sl 89.3/79.7 97.8/97.2 99.3/99.2 68.6/88.2 91.9/97.2 98.8/99.0
it 81.9/58.4 98.7/96.4 99.9/99,8 78.6/88.1 95.8/98.0 99.4/99.7
fr 80.1/52.9 98.3/97.3 99.8/99.6 82.7/88.7 98.4/99.0 99.5/99.6
de 85.2/73.6 98.8/98.1 99.0/98.4 85.7/91.8 98.2/99.6 98.8/99.2
es 81.5/61.6 99.0/98.1 100.0/99.9 73.2/86.4 94.3/98.9 99.3/99.8
en 81.4/51.7 99.4/98.2 99.8/99.1 86.1/91.6 99.2/99.7 99.8/99.4

Precision/recall on test data, in percent.

Classification results are summarised in Table 2, which also includes results
of our implementation of the cross-entropy based character n-gram algorithm
described earlier, on the same data. Recall is measured as the ratio of true posi-
tives to all available positives (including false negatives), precision is the number
of true positives divided by the number of all positives returned (including false
positives). Note that this gives more room for precision errors to the dictionary
method, which can return multiple false positives for each document, unlike the
n-gram method that returns at most one incorrect language per document.

Inspection of results reveals that the errors closely follow the data problems
described above. On one hand this is vexing because it prohibits more exact
evaluation. On the other hand it shows that despite the considerable amount
of noise in training data (which obviously shares the same problems as the test
data) and in face of contradictory information, the classifiers are able to gener-
alize. However, we’d like to stress the fact that our goal here is not to discuss
the absolute numbers, but rather to juxtapose and compare two language iden-
tification methods on the same dataset.

To confirm our hypothesis of poor data quality, we manually checked labels
of all Czech and English test examples. The labeling error was about 1% for
medium and large texts and about 40% for texts of small length. We expect this
error to be similar for the seven remaining languages, too. We re-ran language
identification experiments on the two manually pruned corpora, with results

Table 3. Evaluation on pruned test data

n-gram method dictionary method
language text size text size

code small medium large small medium large

cs 93.5/92.4 98.7/98.7 100.0/100.0 73.9/99.8 86.7/100.0 98.1/100.0
en 93.1/67.3 99.7/98.6 100.0/100.0 98.4/100.0 99.7/100.0 100.0/100.0

Precision/recall on pruned test data, in percent.

366 R. Řeh̊uřek and M. Kolkus

summarised in Table 3. Many short Czech documents are classified as both
Czech and Slovak by the dictionary method, resulting in lower precision but still
excellent recall.

We conclude that the numbers are sufficiently high (in fact, after discounting
the test data noise, nearly optimal) for both algorithms. The main difference and
actually the reason why we developed our dictionary method in the first place is
the added value of being able to return a set of languages as identificaton result,
including the elusive empty set.

4 Segmenting for Language

There is one item on our language identification wish-list that hasn’t been cov-
ered yet: correct classification of documents that contain blocks from different
languages. While our character n-gram method based on cross entropy returns a
random language in this case, dictionary method returns an unknown language.
Both results are wrong. A practical extension to either algorithm would ideally
allow us to locate and identify all compact single-language blocks.

To our knowledge, the only attempt at language segmentation was made in [5].
The authors consider all possible combinations of language change at each char-
acter in the input text and measure the resulting entropy on such text blocks.
Although they report brilliant results of 99.5 % accuracy on character level, the
method misses the mark in terms of speed by several orders of magnitude. Even
with advanced dynamic programming optimizations, it took tens of seconds to
segment a text [5].

Here we describe and evaluate an algorithm that segments input text into
monolingual blocks.

Let Slang(d) = (score(w1, lang), . . . , score(wn, lang)) be a sequence of indi-
vidual unit scores (word relevancies or n-gram probabilities) for the n units in
document d. We can view this sequence as a real-valued signal and use signal
processing to smooth the signal, removing local extrema,

(smoothed)i = fncSIZE(score(wi−SIZE), . . . , score(wi+SIZE)), (8)

for any language lang. We use median with sliding window size SIZE = 2 as
the smoothing function while noting that there is a direct connection between
the smoothing window size and robustness to short extra-lingual segments in
text. These manifest themselves as sharp local valleys and correspond to proper
nouns, typing errors and other text anomalies. Although strictly speaking they
really are different from the surrounding text, our task is to identify coherent
language blocks that are meaningful on discourse rather than token level.

Once we have smoothed signals for all available languages, we identify local
minima in them. This gives us a first estimate of potential segment bound-
aries. The proposed segment boundaries are not final though—many of them
correspond to local minima in between two segments of the same language. We
remerge these back into a single segment. Note that in this way we prohibit
having two consecutive segments of the same language, but we may still arrive

Language Identification on the Web: Extending the Dictionary Method 367

at segments with no language assigned to them. It is also possible to have a seg-
ment with more than one language. This means the text may have been written
in either and is indistinguishable. This often occurs with shorter cs/sk passages
and reflects real ambiguity of input.

Complexity of the whole procedure is linear in the number of words and
languages, O(|d| × |L|).

Evaluation

To evaluate language segmentation, we constructed an artificial corpus. The
corpus contains 1,000 documents, each one of them being a concatenation of 1 to
4 segments in different languages. The numbers were picked to somewhat mimick
situation on the Web, with 4 languages in a single document as an extreme case.
Language segments are pooled randomly from a collection of medium-length
texts in that language (6 to 50 words).

We give this concatenation to our segmentation algorithm, with signal scores
based on word relevancies, and mark down languages predicted for each token.
This per-token evaluation records success each time a token was assigned pre-
cisely the one language that was expected, and failure otherwise. Accuracy is
then computed as #success/(#success + #failure). Note that assigning mul-
tiple languages or no language at all to a token always equals an error.

The algorithm misclassified 1,420 out of possible 49,943 words. This corre-
sponds to 97,16% accuracy. In 603 cases, boundary was missed by one word,
which is still an acceptable error for our purposes. Discounting these off-by-one
boundary errors, accuracy climbs to 98,34%. Closer inspection of the 817 misses
left shows that some of them come from English collocations like grand theft
auto which are embedded inside non-English text segments and regrettably mis-
classified as English by the algorithm. The real accuracy is therefore probably
slightly higher, depending on mode of application.

Although these results are lower than those reported in [5], the algorithm
enjoys conceptual clarity and impressive runtime performance.

5 Conclusion

The article’s main contribution is revisiting and re-evaluation of some of the as-
sumptions made 15 years ago, when the domain of automated language identifi-
cation was being shaped. It proposes a straightforward, fully automated method
which learns a decision function from training data. The decision function is
based on word relevancies and addresses some aching problems of popular char-
acter n-gram based methods, while retaining character n-gram’s excellent ac-
curacy and actually improving runtime efficiency. Another important benefit of
using words instead of character n-grams is that the system is more open to hu-
man introspection, more predictable in ways of interpreting its results (“looking
inside the box”) or selectively changing its behaviour—something of considerable
value in real systems.

368 R. Řeh̊uřek and M. Kolkus

A general segmentation algorithm is described which is based on the notion of
language signal strength within the input document. The algorithm is evaluated
to behave acceptably using word relevancies and solves the problem of language
identification in multilingual documents.

Acknowledgements

This study has been partially supported by the grant LC536 of MŠMT ČR.

References

1. Ingle, N.: A Language Identification Table. Technical Translation International
(1980)

2. Dunning, T.: Statistical Identification of Language (1994)
3. Cavnar, W.B., Trenkle, J.M.: N-gram-based text categorization. In: Ann Arbor

MI, pp. 161–175 (1994)
4. Grefenstette, G.: Comparing two language identification schemes. In: Proceedings

of the 3rd International Conference on the Statistical Analysis of Textual Data
(JADT 1995) (1995)

5. Teahan, W.: Text classification and segmentation using minimum cross-entropy. In:
Proceeding of RIAO 2000, 6th International Conference Recherche d’Information
Assistee par Ordinateur, Paris, FR, pp. 943–961 (2000)

6. Souter, C., Churcher, G., Hayes, J., Hughes, J., Johnson, S.: Natural Language
Identification Using Corpus-Based Models. Hermes Journal of Linguistics 13, 183–
203 (1994)

7. Kilgarriff, A.: Web as corpus. In: Proceedings of Corpus Linguistics 2001, pp. 342–
344 (2001)

8. Kornai, A., et al.: Classifying the Hungarian Web. In: Proceedings of the tenth
conference on European chapter of the Association for Computational Linguistics,
Association for Computational Linguistics Morristown, NJ, USA, vol. 1, pp. 203–
210 (2003)

9. Morrison, D.: PATRICIA – Practical Algorithm To Retrieve Information Coded in
Alphanumeric. Journal of the ACM (JACM) 15(4), 514–534 (1968)

10. Wikimedia Foundation Project: Wikipedia Static HTML Dumps (June 2008),
http://static.wikipedia.org/

http://static.wikipedia.org/

	Language Identification on the Web: Extending the Dictionary Method
	Motivation
	Related Work
	Proposed Method
	Segmenting for Language
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

